Finite-deformation Irreversible Cohesive Elements for Three-dimensional Crack-propagation Analysis
نویسنده
چکیده
We develop a three-dimensional nite-deformation cohesive element and a class of irreversible cohesive laws which enable the accurate and e cient tracking of dynamically growing cracks. The cohesive element governs the separation of the crack anks in accordance with an irreversible cohesive law, eventually leading to the formation of free surfaces, and is compatible with a conventional nite element discretization of the bulk material. The versatility and predictive ability of the method is demonstrated through the simulation of a drop-weight dynamic fracture test similar to those reported by Zehnder and Rosakis. The ability of the method to approximate the experimentally observed crack-tip trajectory is particularly noteworthy. Copyright ? 1999 John Wiley & Sons, Ltd.
منابع مشابه
An open source program to generate zero-thickness cohesive interface elements
An open source program to generate zero-thickness cohesive interface elements in existing finite element discretizations is presented. This contribution fills the gap in the literature that, to the best of the author’s knowledge, there is no such program exists. The program is useful in numerical modeling of material/structure failure using cohesive interface elements. The program is able to ge...
متن کاملUse of Cohesive Elements in Fatigue Analysis Leonard
Cohesive laws describe the resistance to incipient separation of material surfaces. A cohesive finite element is formulated on the basis of a particular cohesive law. Cohesive elements are placed at the boundary between adjacent standard volume finite elements to model fatigue damage that leads to fracture at the separation of the element boundaries per the cohesive law. In this work, a cohesiv...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملA two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis
Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کامل